首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   14篇
  国内免费   1篇
测绘学   17篇
大气科学   24篇
地球物理   38篇
地质学   83篇
海洋学   12篇
天文学   59篇
自然地理   8篇
  2023年   2篇
  2021年   4篇
  2020年   3篇
  2019年   10篇
  2018年   8篇
  2017年   8篇
  2016年   10篇
  2015年   3篇
  2014年   7篇
  2013年   9篇
  2012年   8篇
  2011年   13篇
  2010年   8篇
  2009年   7篇
  2008年   14篇
  2007年   8篇
  2006年   7篇
  2005年   4篇
  2004年   13篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1988年   3篇
  1985年   3篇
  1983年   2篇
  1982年   3篇
  1979年   3篇
  1978年   6篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
  1969年   1篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1960年   1篇
  1956年   1篇
  1948年   1篇
排序方式: 共有241条查询结果,搜索用时 156 毫秒
91.
Soil water stable isotopes are widely used across disciplines (e.g., hydrology, ecology, soil science, and biogeochemistry). However, the full potential of stables isotopes as a tool for characterizing the origin, flow path, transport processes and residence times of water in different eco-, hydro-, and geological compartments has not yet been exploited. This is mainly due to the large variety of different methods for pore water extraction. While recent work has shown that matric potential affects the equilibrium fractionation, little work has examined how different water retention characteristics might affect the sampled water isotopic composition. Here, we present a simple laboratory experiment with two well-studied standard soils differing in their physico-chemical properties (e.g., clayey loam and silty sand). Samples were sieved, oven-dried and spiked with water of known isotopic composition to full saturation. For investigating the effect of water retention characteristics on the extracted water isotopic composition, we used pressure extractors to sample isotopically labelled soil water along the pF curve. After pressure extraction, we further extracted the soil samples via cryogenic vacuum extraction. The null hypothesis guiding our work was that water held at different tensions shows the same isotopic composition. Our results showed that the sampled soil water differed isotopically from the introduced isotopic label over time and sequentially along the pF curve. Our and previous studies suggest caution in interpreting isotope results of extracted soil water and a need to better characterize processes that govern isotope fractionation with respect to soil water retention characteristics. In the future, knowledge about soil water retention characteristics with respect to soil water isotopic composition could be applied to predict soil water fractionation effects under natural and non-stationary conditions. In this regard, isotope retention characteristics as an analog to water retention characteristics have been proposed as a way forward since matric potential affects the equilibrium fractionation between the bound water and the water vapour.  相似文献   
92.
A suite of instruments on the Beagle 2 Mars lander was designed and built in order to investigate the environmental conditions at the landing site. The sensor suite was capable of measuring air temperature at two heights, surface level pressure, wind speed and direction, saltated particle momentum, UV flux (diffuse and direct at five wavelengths), the total accumulated radiation dose and investigating the nature of the oxidising environment. The scientific goals of the instruments are discussed within the context of current understanding of the environmental conditions on Mars, and the instruments themselves are described in detail. Beagle 2 landed on Mars in late 2003, as part of the ESA Mars Express mission. The expected lifetime of the lander on the surface was 180 sols, with a landing site in Isidis Planitia, but has not responded to attempts to contact it, and has now been declared lost. The Environmental Sensor Suite (ESS) was intended to monitor and characterise the current local meteorological parameters, investigating specific areas of scientific interest raised from previous missions, most notably dust transport and transient phenomena, and additionally to add context to the conditions that any possible martian micro-organisms would have to face. The design of the instrument suite was strongly influenced by mass limitations, with eight sensor subsystems having a total mass of approximately 100 g. Although Beagle 2 has been now declared lost, the scientific goals of an Environmental Sensors Suite still remain a valid target for any future astrobiology orientated missions.  相似文献   
93.
We present results of a detailed investigation of zircons from two rhyolites from St. Egidien and Chemnitz, Saxony, using a combination of microprobe techniques (SHRIMP ion probe, Raman microprobe, SEM: SE, BSE, and CL imaging). These rhyolites belong to the so-called “lower volcanics”, which is the older of two series of Late Variscan volcanic rocks occurring in the Saxonian Sub-Erzgebirge basin (Germany). The purpose of the present contribution is to demonstrate that detailed characterization of zircons, as provided by the different micro-techniques, facilitates soundest interpretation of geochronological data. The zircons (at most 40 to 80 m in size) show oscillatory growth zoning, with reversely correlated CL and BSE signal intensities. These zircons are interpreted to have grown during crystallization of the rhyolite because, apart from some cracking, they do not appear to have experienced any alteration since the time of their growth: The shapes of the zircons and their internal structures revealed by CL and BSE imaging appear to be magmatic, and neither annealing of the accumulated alpha-decay damage nor disturbance of the U-Pb system is observed. The SHRIMP ion probe measurements on the zircons gave a Permian 206Pb/238U age of 278 ± 5 Ma (95% confidence). The concordance of this age is supported by the correlation between the low degrees of metamictization (estimated from Raman parameters) and the accumulated alpha fluxes (calculated from SHRIMP data). The 278 Ma zircon age is interpreted to represent the age of the “lower rhyolites” series and, with that, the age of postkinematic Late Variscan volcanism in the Sub-Erzgebirge basin, which has been related to anorogenic extension and uplift as a result of intracontinental rifting. Because of genetic association of rhyolites in the Sub-Erzgebirge basin and Li-F granites and lamprophyres in the neighbouring Erzgebirge, the rhyolite age also indirectly contributes to the understanding of the geological history of the Erzgebirge. The 278 Ma age is the first absolute dating result for rhyolites from the Saxonian Sub-Erzgebirge basin. Received: 16 December 1997 / Accepted: 4 May 1998  相似文献   
94.
Temperature measurements of hydrothermal vent fluids provide an important indicator of the physical and chemical state of mid-ocean ridge crest hydrothermal and magmatic systems. Changes in vent fluid temperature and chemistry can have dramatic effects on biological communities that inhabit these unique ecosystems. In an attempt to understand temporal variability of ridge crest hydrothermal activity as it relates to geological processes at the ridge axis, six high-temperature hydrothermal vents on the East Pacific Rise crest between 9°49′N and 9°51′N were instrumented and sampled repeatedly during five years following a submarine volcanic eruption in 1991. Bio9 vent, located on the floor of the axial trough near 9°50.2′N, has the most complete record of fluid temperatures from 1991 to 1997, including a continuous temperature record of nearly three years (1994–1997). Bio9 vent fluids were 368°C in 1991, increased to an estimated temperature ≥388°C after a second volcanic event in 1992, and thereafter declined over the next 2 years reaching a temperature of 365°C in December 1993. Continuous temperature records and point measurements made by Alvin's thermocouple probe show Bio9 vent fluids were stable for 15 months at 365±1°C, until March 26, 1995. On March 26, an abrupt 7°C increase occurred over a period of eight days at this vent, and a maximum temperature of 372±1°C persisted for 14 days. The vent fluid cooled gradually over 3.5 months to 366±1°C, and for several months at the end of the recording period the temperature increased a few degrees. A continuous record of fluid temperature at this vent between November 1995 and November 1997 shows a 5±1°C increase for the two-year period. The abrupt temperature increase at Bio9 vent, and coincident changes in faunal community structure, and geochemistry of vent fluids from this area suggest that a crustal event occurred, either in the form of a cracking front in the crust or intrusion of a small dike. Based on the results of a microseismicity experiment conducted around the Bio9 vent in 1995 [Sohn et al., Trans. Am. Geophys. Union 78 (1997) F647; Sohn et al., Nature (in press)], and the identification of a small earthquake swarm which occurred on March 22, 1995 we conclude that the temperature anomaly measured at Bio9 four days following the swarm was caused by a cracking front penetrating into hot crustal rocks beneath the vent.  相似文献   
95.
If shock-waves are running outwards through the solar atmosphere, the variations of the intensity of optically thin UV-lines should reflect the variations in temperature and pressure of the shocks. In addition, the high fluid velocity produces Doppler shifts in the local line profiles. Assuming vertically propagating shockwaves with a period of 200 s, a procedure is specified for calculating the time-dependent line profile for a radial line of sight. The width of the shock pulse which characterizes the shape of the shock, is treated as a free parameter. Because the processes of ionization and recombination are out of equilibrium, the relative ion densities are obtained by solving the continuity equations. Results are presented for the O vi-resonance-line 1032 Å.  相似文献   
96.
Main group pallasite meteorites are samples of a single early magmatic planetesimal, dominated by metal and olivine but containing accessory chromite, sulfide, phosphide, phosphates, and rare phosphoran olivine. They represent mixtures of core and mantle materials, but the environment of formation is poorly understood, with a quiescent core–mantle boundary, violent core–mantle mixture, or surface mixture all recently suggested. Here, we review main group pallasite data sets and petrologic characteristics, and present new observations on the low‐MnO pallasite Brahin that contains abundant fragmental olivine, but also rounded and angular olivine and potential evidence of sulfide–phosphide liquid immiscibility. A reassessment of the literature shows that low‐MnO and high‐FeO subgroups preferentially host rounded olivine and low‐temperature P2O5‐rich phases such as the Mg‐phosphate farringtonite and phosphoran olivine. These phases form after metal and silicate reservoirs back‐react during decreasing temperature after initial separation, resulting in oxidation of phosphorus and chromium. Farringtonite and phosphoran olivine have not been found in the common subgroup PMG, which are mechanical mixtures of olivine, chromite with moderate Al2O3 contents, primitive solid metal, and evolved liquid metal. Lower concentrations of Mn in olivine of the low‐MnO PMG subgroup, and high concentrations of Mn in low‐Al2O3 chromites, trace the development and escape of sulfide‐rich melt in pallasites and the partially chalcophile behavior for Mn in this environment. Pallasites with rounded olivine indicate that the core–mantle boundary of their planetesimal may not be a simple interface but rather a volume in which interactions between metal, silicate, and other components occur.  相似文献   
97.

We study the predictive capabilities of magnetic-feature properties (MF) generated by the Solar Monitor Active Region Tracker (SMART: Higgins et al. in Adv. Space Res. 47, 2105, 2011) for solar-flare forecasting from two datasets: the full dataset of SMART detections from 1996 to 2010 which has been previously studied by Ahmed et al. (Solar Phys. 283, 157, 2013) and a subset of that dataset that only includes detections that are NOAA active regions (ARs). The main contributions of this work are: we use marginal relevance as a filter feature selection method to identify the most useful SMART MF properties for separating flaring from non-flaring detections and logistic regression to derive classification rules to predict future observations. For comparison, we employ a Random Forest, Support Vector Machine, and a set of Deep Neural Network models, as well as lasso for feature selection. Using the linear model with three features we obtain significantly better results (True Skill Score: TSS = 0.84) than those reported by Ahmed et al. (Solar Phys. 283, 157, 2013) for the full dataset of SMART detections. The same model produced competitive results (TSS = 0.67) for the dataset of SMART detections that are NOAA ARs, which can be compared to a broader section of flare-forecasting literature. We show that more complex models are not required for this data.

  相似文献   
98.
The center of the 35.3 Ma Chesapeake Bay impact structure (85 km diameter) was drilled during 2005/2006 in an ICDP–USGS drilling project. The Eyreville drill cores include polymict impact breccias and associated rocks (1397–1551 m depth). Tens of melt particles from these impactites were studied by optical and electron microscopy, electron microprobe, and microRaman spectroscopy, and classified into six groups: m1—clear or brownish melt, m2—brownish melt altered to phyllosilicates, m3—colorless silica melt, m4—melt with pyroxene and plagioclase crystallites, m5—dark brown melt, and m6—melt with globular texture. These melt types have partly overlapping major element abundances, and large compositional variations due to the presence of schlieren, poorly mixed melt phases, partly digested clasts, and variable crystallization and alteration. The different melt types also vary in their abundance with depth in the drill core. Based on the chemical data, mixing calculations were performed to determine possible precursors of these melt particles. The calculations suggest that most melt types formed mainly from the thick sedimentary section of the target sequence (mainly the Potomac Formation), but an additional crystalline basement (schist/gneiss) precursor is likely for the most abundant melt types m2 and m5. Sedimentary rocks with compositions similar to those of the melt particles are present among the Eyreville core samples. Therefore, sedimentary target rocks were the main precursor of the Eyreville melt particles. However, the composition of the melt particles is not only the result of the precursor composition but also the result of changes during melting and solidification, as well as postimpact alteration, which must also be considered. The variability of the melt particle compositions reflects the variety of target rocks and indicates that there was no uniform melt source. Original heterogeneities, resulting from melting of different target rocks, may be preserved in impactites of some large impact structures that formed in volatile‐rich targets, because no large melt body exists, in which homogenization would have taken place.  相似文献   
99.
We synthesize reaction rims between thermodynamically incompatible phases in the system MgO-Al2O3-SiO2 applying uniaxial load using a creep apparatus. Synthesis experiments are done in the MgO-SiO2 and in the MgO-Al2O3 subsystems at temperatures ranging from 1150 to 1350 °C imposing vertical stresses of 1.2 to 29 MPa at ambient pressure and under a constant flow of dry argon. Single crystals of synthetic and natural quartz and forsterite, synthetic periclase and synthetic corundum polycrystals are used as starting materials. We produce enstatite rims at forsterite-quartz contacts, enstatite-forsterite double rims at periclase-quartz contacts and spinel rims at periclase-corundum contacts. We find that rim growth under the “dry” conditions of our experiments is sluggish compared to what has been found previously in nominally “dry” piston cylinder experiments. We further observe that the nature of starting material, synthetic or natural, has a major influence on rim growth rates, where natural samples are more reactive than synthetic ones. At a given temperature the effect of stress variation is larger than what is anticipated from the modification of the thermodynamic driving force for reaction due to the storage of elastic strain energy in the reactant phases. We speculate that this may be due to modification of the physical properties of the polycrystals that constitute the reaction rims or by deformation under the imposed load. In our experiments rim growth is very sluggish at forsterite-quartz interfaces. Rim growth is more rapid at periclase-quartz contacts. The spinel rims that are produced at periclase-corundum interfaces show parabolic growth indicating that reaction rim growth is essentially diffusion controlled. From the analysis of time series done in the MgO-Al2O3 subsystem we derive effective diffusivities for the Al2O3 and the MgO components in a spinel polycrystal as ${\rm D}_{MgO} = 1.4 \pm 0.2 \cdot 10^{-15}$  m2/s and ${\rm D}_{Al_2O_3} = 3.7 \pm 0.6 \cdot 10^{-16}$  m2/s for T?=?1350 °C and a vertical stress of 2.9 MPa.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号